Vitamin C and polio
by Andrew W. Saul
Orthomolecular Medicine News Service
Thu, 08 Aug 2013 04:25 UTC
"Vitamin C can truthfully be designated as the antitoxic and antiviral vitamin." (C.W. Jungeblut, MD)
As if the Cuban missile crisis wasn't enough, I had even
more to be worried about as a child at the turn of the 1960's. When all of us in
first grade had been told that we were to be vaccinated against polio, I for one
didn't want to go near the school on that day. Regardless of my fear of needles,
I had no choice in the matter. So, like all the rest of the kids, I braced up,
got in line, and marched down the tiled hallway to meet my fate. When I got to
the school nurse's office, I was astounded to be handed a lump of sugar with a
drop of something soaking into it. I was told to eat it. I did. Then I was told
I could go. Escape without a shot? What a fantastic turn of events! Life could
begin anew.
In time, my classmates and I would all learn the name of our painless
benefactor, Dr. Albert Sabin. With more time, I would find that his live oral
vaccine had become the leading cause of polio in the US. What surprised me
most was that the strongest criticism originated from the most eminent of
sources: the other polio hero, Dr. Jonas Salk. On September 24, 1976, the Washington
Post reported Dr. Salk's assertion that the Sabin live oral virus vaccine
had been the "principal if not sole cause" of every reported polio case in the
United States since 1961. (1) Salk repeated this accusation July 6, 1977,
when he was interviewed on CBC television (2), saying: "(W)e have known now
since 1961 in the United States, and prior to that in other countries, that the
live virus vaccine for polio does cause the disease itself."
In 1996, one year after Salk died, the US Centers for Disease Control began a
turn-away from the oral live vaccine and recommended killed virus injections for
the first two rounds of infant polio immunization. By 2000, CDC stated that "To
eliminate the risk for vaccine-associated paralytic poliomyelitis, an
all-Injected Polio Virus schedule is recommended for routine childhood
vaccination in the United States." (3) Thus only after two decades would
orthodoxy at last take heed of the cautionary words of Dr. Salk, the man
credited with creating the first polio vaccination.
From fame to ascorbate to obscurity
Sabin and Salk had media visibility, a professional rivalry, and a personal
animosity spanning decades. Everyone today knows their names. By contrast, the
public and orthodox medicine are yet to pay proper attention to the work of Dr.
Claus Washington Jungeblut. In his New York Timesobituary (4), we learn
that Claus Washington Jungeblut received his M.D. from the University of Bern in
1921 and, between 1921 and 1923, conducted research at the Robert Koch Institute
in Berlin. After employment as a bacteriologist for the New York State
Department of Health from 1923 until 1927, he became Associate Professor at
Stanford University from 1927 until 1929, when he joined the faculty at the
Columbia University College of Physicians and Surgeons as Associate Professor of
Bacteriology. Named a full professor in 1937, Jungeblut retired June 30, 1962.
He died February 1, 1976, aged 78, at home in Westport, Connecticut.
In his day, Jungeblut was justly regarded as an important player in polio
research. While recent revisionist history of the fight against polio has
generally downplayed his contribution to the crusade, it has totally sidestepped
what was arguably his most important discovery: that ascorbate is prevention and
cure for polio. Amazingly, Jungeblut first published this idea in 1935. (5) His
research on ascorbate was sweeping and profound, extending well beyond the topic
of polio.In 1935, he also had shown that vitamin C inactivated diphtheria toxin.
(6) By 1937, Jungeblut demonstrated that ascorbate inactivated tetanus toxin.
(7) John T. A. Ely, PhD, writes: "In the 1930's, the remarkable Claus W.
Jungeblut, MD . . . first reported that ascorbic acid in concentrations,
attainable in humans by a high intake, could inactivate and or protect against
numerous viral and bacterial pathogens and their toxins. These include the
polio, hepatitis and herpes viruses. . . One of (Jungeblut's) earliest
research findings was ascorbic acid's ability to neutralize and render
harmless many bacterial toxins, such as tetanus, diphtheria, and staph toxins."
(8)
Unlike oral polio vaccination, vitamin C has never caused polio. Yet how many
people have you met, physicians included, who know vitamin C has been known to
prevent and cure poliomyelitis for nearly 70 years? It was never really a
secret. On September 18, 1939, Time magazine reported that "Last week, at
the Manhattan meeting of the International Congress for Microbiology, two new
clues turned up. (One is) Vitamin C." (9) The article describes how Jungeblut,
while studying statistics of the 1938 Australian polio epidemic, deduced that
low vitamin C status was associated with the disease.
After that, Jungeblut is rarely highlighted by the popular or professional
media. And, where he and his work are memorialized, there is no mention of
ascorbate. The US National Library of Medicine has the broadest collection of
his papers and laboratory data encompassing 42 years, 1922 to 1964. Oddly
enough, the six boxes of documents are incongruously housed in NLM's Tropical
Medicine Manuscript Collection. (10) Perhaps the only flag for the nutritionally
curious is a note that the contents description names Albert Szent-Gyorgyi among
Jungeblut's correspondents. Even at Columbia University, where he taught for 33
years (1929-1962), records are scanty. "We have very little on Claus W.
Jungeblut, which is odd considering how long he served on the faculty," said
Stephen E. Novak, head of archives at the Columbia University Medical Center's
Augustus C. Long Health Sciences Library. (11)
Of Dr. Jungeblut's many research reports, 22 were published in the Journal of
Experimental Medicine. They are archived and available for free online
access here.
Key papers regarding vitamin C include:
Jungeblut CW. Inactivation of poliomyelitis virus in vitro
by crystalline vitamin C (ascorbic acid). J Exper Med, 1935. October;
62:517-521
Jungeblut CW. Vitamin C therapy and prophylaxis in experimental poliomyelitis. J
Exp Med, 1937. 65: 127-146.
Jungeblut CW. Further observations on vitamin C therapy in experimental
poliomyelitis. J Exper Med, 1937. 66: 459-477.
Jungeblut CW, Feiner RR. Vitamin C content of monkey tissues in experimental
poliomyelitis. J Exper Med, 1937. 66: 479-491.
Jungeblut CW. A further contribution to vitamin C therapy in experimental
poliomyelitis. J Exper Med, 1939. 70:315-332.
Whatever happened to vitamin C therapy for polio?
When discussion about poliomyelitis turns towards megascorbate prophylaxis and
treatment, there is no more frequent rejoinder than this: "If vitamin C therapy
were so good, all doctors would be using it."
In his book The Healing Factor, Irwin Stone explains why they're not:
"The application of ascorbic acid in the treatment of poliomyelitis is an incredible story of high hopes that end in disappointment . . . And then, when a worker finally seemed to be on the right path and had demonstrated success, hardly anyone believed his results, which were systematically ignored. . . Within two years after the discovery of ascorbic acid, Jungeblut showed that ascorbic acid would inactivate the virus of poliomyelitis. This was followed, in 1936-1937, in rapid succession by other workers showing similar inactivation of other viruses: by Holden et al., using the herpes virus; by Kligler and Bernkopf, on the vaccina virus, by Lagenbusch and Enderling, with the virus of hoof-and-mouth disease; by Amato, on the rabies virus; by Lominski, using bacteriophage; and by Lojkin and Martin, with the tobacco mosaic disease virus. Thus, at this early date it was established that ascorbic acid had the potential of being a wide-spectrum antiviral agent. Here was a new "magic bullet" that was effective against a wide variety of viruses and was known to be completely harmless. . . (T)his work was being carried out in the pre-Salk days. Then, all a doctor could do in a polio case was apply symptomatic relief and hope for the best. An epidemic could run its course without much interference from medicine and an effective, harmless virucide would have been a priceless commodity. Jungeblut continued his work and published a series of papers from 1936 to 1939 in which he showed that the administration of ascorbic acid to monkeys infected with poliomyelitis produced a distinct reduction in the severity of the disease and enhanced their resistance to it. Sabin, attempting to reproduce Jungeblut's work on monkeys, failed to obtain these partially successful results. In further efforts to explain their variable clinical results, both scientists got bogged down chasing the technical details of the tests. It may be easy for us to look back now and say that the size and the frequency of the dosages were insufficient to maintain high levels of ascorbic acid in the blood during the incubation of the disease. The upshot was that the negative findings of Sabin effectively stifled further research in this field for a decade. . . In his 1952 paper, Frederick R. Klenner, MD . . . comments on Jungeblut's earlier work, stating that his results were indecisive because the amount of vitamin C given was inadequate to cope with the degree of infection. Sabin's results were not as suggestive as Jungeblut's because he, Sabin, used a greater dose of virus and less vitamin C. If high blood and tissue levels of ascorbic acid are continuously maintained, an extremely unfavorable environment for viral growth and reproduction is created in the human body." (12)
Robert Landwehr adds:
"(S)ince 1939 polio experts were quite certain that vitamin C was not effective against polio. There seemed little doubt that Dr. Albert B. Sabin, a highly respected figure in medical research even before he developed his successful vaccines, had demonstrated that vitamin C had no value in combating polio viruses. In 1939 he published a paper showing that vitamin C had no effect in preventing paralysis in rhesus monkeys experimentally infected with a strain of polio virus. He had tried to corroborate the work of Dr. Claus W. Jungeblut, another highly respected medical researcher, who had published in 1935 and 1937 papers indicating that vitamin C might be of benefit. Sabin could not reproduce Jungeblut's results even though he consulted Jungeblut during the course of the experiments. It seemed to be a fair trial, and Sabin's negative results virtually ended experiments with vitamin C and polio." (13)
Klenner said that there was a simple reason for Sabin's well-reported failures: the dosage was far too low. He writes (14):
"From a review of the literature one can safely state that in all instances of experimental work with ascorbic acid on the virus organism, in experimental animals, the amount of virus used was far beyond the range of the administered dose of this vitamin. . . . Jungeblut (in 1937) stated that the parenteral administration of natural vitamin C during the incubation period of poliomyelitis in monkeys is always followed by a distinct change in the severity of the disease; that after the fifth day of the disease larger doses are required. . . One of the most unfortunate mistakes in all of the research on poliomyelitis was Sabin's unscientific attempt to confirm Jungeblut's work with vitamin C against the polio virus in monkeys. Jungeblut in infecting his rhesus monkeys used the mild "droplet method" and then administered vitamin C by needle in varying amounts up 400 mg/day. . . (Even) with almost infinitesimal amounts, as we at present recognize, he was able to demonstrate in one series that the non-paralytic survivors was six times as great as in the controls. On the other hand, Sabin, in infecting his monkeys did not follow the procedure given by Jungeblut whose experiments he was attempting to repeat, but instead employed a more forceful method of inoculation which obviously resulted in sickness of maximum severity. Sabin further refused to follow Jungeblut's suggestion as to the dose of vitamin C to be used. By Sabin's actual report the amount given was rarely more than 35 per cent of that used by his associate. (In 1939) Sabin makes this significant statement: 'One monkey was given 400 mg of vitamin C for one day at the suggestion of Jungeblut who felt that large doses was necessary to effect a change in the course of the disease.' Yet on the basis of Sabin's work the negative value of vitamin C in the treatment of virus diseases has been for years accepted as final."
Klenner, who published several papers discussing his
success using megadoses of ascorbate with polio patients, administered many
thousands of milligrams of ascorbate daily. This dosage is enormously different
from Sabin's low doses, normally only one-third of Jungeblut's. Furthermore,
Sabin gave one and only one single "large dose" of 400 mg, to only one animal,
and for only one day. Sadly, adds Klenner, "Sabin's negative report on the value
of ascorbic acid on the poliomyelitis virus stopped Jungeblut's work." (15)
Fortunately, it did not stop Klenner, who piloted megascorbate therapy for his
patients during the 1948 polio epidemic. "For patients treated in the home,"
writes Klenner, "the dose schedule was 2,000 mg by needle every six hours,
supplemented by 1,000 to 2,000 mg every two hours by mouth." That is a total of
8,000 mg/day intramuscularly, plus, allowing for sleep, oral doses in the range
of an additional 16,000 to 32,000 mg. This yields a total between 20,000 and
40,000 mg of vitamin C per day.
Curiously, the only report on vitamin C and polio that Klenner had at that time
read was Sabin's negative one. Klenner writes that his own "observations of the
action of ascorbic acid on virus diseases were made independently of any
knowledge of previous studies using vitamin C on virus pathology, except for the
negative report of Sabin after treating Rhesus monkeys experimentally infected
with the poliomyelitis virus." Then he reviewed the literature, finding "an
almost unbelievable record of such studies. The years of labor in animal
experimentation, the cost in human effort and in grants, and the volumes
written, make it difficult to understand how so many investigators could have
failed in comprehending the one thing that would have given positive results a
decade ago. This one thing was the size of the dose of vitamin C employed and
the frequency of its administration. In all fairness it must be said that
Jungeblut noted on several occasions that he attributed his failure of results
to the possibility that the strength of his injectable 'C' was inadequate. It
was he who unequivocally said that ''vitamin C can truthfully be designated as
the antitoxic and antiviral vitamin.'" (15)
Deja Vu all over again
In 1935, nylon was created and the discovery of the neutron won the Nobel. The
Gallup poll was begun, and Errol Flynn had his first movie starring role in
Captain Blood. At this time, the year the DC-3 first went into service, when a
first-class postage stamp cost 3 cents, Claus W. Jungeblut was the first
scientist to proclaim that ascorbate was antiviral. All that remained was to use
enough of it.
In the late 1970's, as a young father, and long before I had ever heard of Dr.
Jungeblut, I was earnestly applying megadoses of ascorbate due to what I'd read
by Irwin Stone and Frederick Klenner. Their papers, written standing solidly
upon Jungeblut's shoulders, were the primary reason I was able to raise healthy
children without Salk shots or Sabin sugar cubes. But, by golly, my kids
certainly took a lot of vitamin C. From seven decades past, Claus W. Jungeblut
has directly influenced the course of every orthomolecular practitioner, and
earned the thanks of every patient whose health, and life, has been saved by
ascorbate therapy.
This paper originally appeared in J Orthomolecular Med, 2006. Vol 21,
No 2 and is reprinted with permission. For more information about JOM:http://www.orthomed.org/jom/jom.html You
may access the Journal's 41-year online archive free of charge at http://orthomolecular.org/library/jom/
References
1. Miller NZ. Vaccines and natural health. Mothering. Spring 1994, p
44-54.
2. The CBC interview with Dr. Salk may be viewed at http://www.cbc.ca/player/Digital+Archives/Health/Public+Health/ID/1824800224/?page=4&sort=MostPopular or http://www.cbc.ca/archives/categories/health/public-health/polio-combating-the-crippler/sabin-vs-salk-oral-vs-injected-vaccine.html
3. The Advisory Committee on Immunization Practices. Notice to readers:
recommended childhood immunization schedule - United States, 2000. MMWR Weekly
January 21, 2000;49(02):35-38, 47.
4. New York Times, Feb 2 1976, p 23.
5. Jungeblut CW. Inactivation of poliomyelitis virus by crystalline vitamin C
(ascorbic acid). J Exper Med 1935. 62:317-321.
6. Jungeblut CW, Zwemer RL. Inactivation of diphtheria toxin in vivo and in
vitro by crystalline vitamin C (ascorbic acid). Proc Soc Exper Biol Med 1935;
32:1229-34.
7. Jungeblut CW. Inactivation of tetanus toxin by crystalline vitamin C
(l-ascorbic acid). J Immunol 1937;33:203-214.
8. Ely JTA. A unity of science, especially among physicists, is urgently needed
to end medicine's lethal misdirection. arXiv:physics/0403023 Vol 1, Mar 2,
2004. http://arxiv.org/abs/physics/0403023 or http://arxiv.org/e-print/physics/0403023
9. Polio clues. Time. Monday, September 18, 1939.
10. NLM call number: MS C 361. http://www.nlm.nih.gov/hmd/manuscripts/tropical/alpha.html
11. Personal communication, March 27, 2006.
12. Stone I. The Healing Factor, Chapter 13, Viral Infection. Grosset and
Dunlap, 1972. This book is posted online for free reading athttp://vitamincfoundation.org/stone/
13. Robert Landwehr. The origin of the 42-year stonewall of vitamin C. Journal
of Orthomolecular Medicine, 1991, Vol 6, No 2, p 99-103.
14. Klenner FR. The use of vitamin C as an antibiotic. Journal of Applied
Nutrition, 1953, Vol 6, p 274-278.
15. Klenner FR. The treatment of poliomyelitis and other virus diseases with
vitamin C. Southern Medicine and Surgery, July, 1949, p 209.